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The paper explores the whole class of self-similar solutions for blast waves 
bounded by Chapman-Jouguet detonations that propagate into a uniform, 
quiescent, zero counter-pressure atmosphere of a perfect gas with constant 
specific heats. Since such conditions can be approached quite closely by some 
actual chemical systems a t  N.T.P., this raises the interesting possibility of the 
existence of Chapman-Jouguet detonations of variable velocity. The principal 
virtue of the results presented here is, however, more of theoretical significance. 
They represent the limiting case for all the self-similar blast waves headed by 
gasdynamic discontinuities associated with a deposition of finite amounts of 
energy, and they exhibit some unique features owing to the singular nature 
of the ChapmanJouguet condition. 

1. Introduction 
In  our previous paper on self-similar blast waves (Oppenheim et al. 1972), it 

was shown that the Hugoniot curves on the phase plane of reduced blast wave 

d In r, 
d In t,, 

t 
rPJ 

variables 
P = -u, Z = , where p =- 

(the symbols t ,  r ,  u and a representing, respectively, the time and space co- 
ordinates, particle velocity and sound speed, while the subscript n refers to the 
front), approach rapidly the limiting case of zero counter pressure for quite 
reasonable values of the Hugoniot constant. The latter is expressed most con- 
veniently in terms of the pressure ratio PG = pG'/po, where G is the point on the 
Hugoniot curve corresponding to initial density. Thus, as is illustrated on 
figure 1, the Hugoniot curve on the phase plane for PG = 10 is already almost 
coincident with that for PG = 00. Representative values of PG for some typical 
chemical systems are listed in table 1. It appears then that, if in most of these 
systems a blast wave headed by a Chapman-Jouguet detonation is formed, the 
boundary condition for such a flow field is given by the intersection of the 
PG = co line and the locus of the sonic condition, the D = 0 parabola. 

Solutions corresponding to this boundary condition, CJ,,  have singularly 
unique properties. The purpose of this paper is to examine salient features of such 
solutions for the case of self-similar blast waves propagating into a uniform 
atmosphere of a perfect gas with constant specific heats at rest. 
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FIGURE 1. Phase plane for spherical waves with constant front velocity 
(j = 2, h = 0, y = 1.4). 

Chemical system P G  

H, +to, 
CZH, + 0 2  

CZH, + 2120, 
CH4 + 20, 
C,H6 + 3+02 
CaH, + 50,  
CH, + Stoichiometric air 
C,H, + Stoichiometric air 
C,H, + Stoichiometric air 

9.558 
23.052 
17.086 
14.876 
17.193 
18.299 
8-809 
9.777 
9.395 

TABLE 1. Representative values of PC for a variety of chemical systems at  N.T.P. 

In this connexion it should be noted that, although the treatment of self- 
similar blast waves headed by CJ detonations was initiated by Taylor (1 950) and, 
indeed, included in the texts of Sedov (1959), Zel’dovich & Kompaneets (1960) 
and Zel’dovich & Raizer (1966), the studies described there were confined to 
constant-velocity waves only. The present paper exposes the existence of solu- 
tions associated with Chapman-Jouguet detonations of variable velocity: the 
case that, undoubtedly on account of its somewhat paradoxical nature, has so far 
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escaped the attention of research workers in this field of study. Nonetheless, as is 
demonstrated by the values of PG in table 1, which are in effect equivalent to 
PG = co, the practical significance of such cases is certainly within the realm of 
physical possibility. What makes the subject of our paper particularly interesting, 
however, is the fact that it represents a limiting and singular case for all possible 
self-similar blast waves headed by strong discontinuities. In this respect it com- 
plements the treatment presented in our previous paper (Oppenheim et al. 1972) 
on the class of solutions corresponding to strong shocks. Between the two are 
such cases as that corresponding to a constant rate of energy addition a t  the 
front, representing strong blast waves driven by laser irradiation, which has been 
recently analysed by Champetier, Couairon & Vendenboomgaerde (196 8) and by 
Wilson & Turcotte (1970). 

2. Governing equations and boundary conditions 
As was demonstrated in our previous paper (Oppenheim et al. 1972), propagation 

of self-similar blast waves into a uniform atmosphere of a perfect gas with 
constant y at rest is governed by the differential equation 

d 2  z P(P,Z)  
dF=CT&(p,,  

where &(P,Z)  = ( j + l ) [ P - h / ( j + 1 ) y ] 2 - ( 4 h + I - P ) ( 1 - F ) F  (3) 

and P(P ,Z)  = [ h + 2 - { ( j + 1 ) ( y - l ) + 2 } P l D ( P , Z ) + ( y - 1 ) & ( ~ , Z ) ,  (4) 

while D(P,Z)  = Z-( l -P)2 .  ( 5 )  

In  the above h = - 2d In wn/d In r, is the so-called decay parameter, which is 
related to the ,u of (1) by the relation 

while w, is the propagation velocity of the wave front. Geometry is taken into 
account by the integer j ,  which is equal to 0,  1 and 2 for plane-, line- and point- 
symmetrical waves, respectively. Positive A’s correspond to decaying waves and 
negative A’s to accelerating waves. The case of h = 0 corresponds to waves having 
constant front velocity. Since, according to classical concepts, the propagation 
speed of a Chapman-Jouguet detonation is essentially invariant, all the solutions 
reported in the literature are concerned with representative cases of such waves 
only. In  order to provide a concise r6sum6 of this class of problems salient 
properties of blast waves headed by detonation fronts of constant velocity are 
considered first. 

A set of integral curves for this case is shown in figure 1 ; a similar set, although 
not to scale, is included in the text of Courant & Friedrichs (1948). The curves 
were determined by a straightforward numerical integration of (2) using (3)) 
(4) and (5) withj  = 2, h = 0 and y = 1.4. Each of the curves represents a solution 
specifying the structure of a blast wave. The arrows denote the direction of 
increasing radius and change sense at the D = 0 line, which thus forms a boundary 
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separating two classes of problems. Those to the right of it are piston-driven, the 
locus of conditions a t  the piston face being given by the F = I line. They can 
terminate a t  any point between the Rankine-Hugoniot curve RH and the 
D = 0 line, depending on whether the front of the wave is a shock (end-point on 
the RH line), a Chapman-Jouguet detonation (end-point on the D = 0 line) or 
a strong detonation (any point between the two). Those to the left are point 
explosions headed by the Chapman-Jouguet detonation (end-point on the D = 0 
line). The possibility of a weak detonation acting as a front of a blast wave (the 
end-point being anywhere to the left of the D = 0 line) is ruled out as physically 
improbable. For this reason also certain portions of integral curves are repre- 
sented by broken lines to indicate that they correspond to physically unrealistic 
conditions. The extent of the regime of boundary conditions is terminated by 
the point of intersection between the PG = co line and the Rankine-Hugoniot 
curve marked by a cross. It represents the conditions immediately behind a 
shock whose Mach number is infinite. 

Boundary conditions for the class of problems considered here in detail are 
given by the co-ordinates of the point C.7,. This point lies a t  the intersection of 
the PG = co line given by the equation 

2 = y ( 1 - F ) F  (7)  

and the locus of Chapman-Jouguet states on the line D = 0: 

2 = ( I - F ) 2 .  
Prom the above, one obtains 

An interesting property of the CJ, point is that the slope of the integral curve in 
the phase plane is a t  this point independent of h andj,  being a function of y only, 
that is, as a consequence of (2)-(5) and (9), 

Y - 1  Fl = y-. 
dF  C J ,  y + l  

Once the integral curve 2 = Z ( F )  of (2) has been determined, the position in 
the flow field of a given state, specified in terms of F and 2, is evaluated by 
the quadrature of the relation 

where x = r / rn .  The velocity and temperature profiles are determined directly 
from the definitions of F and 2 in (I), 

U F T  
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while the so-called adiabatic integral yields the density profiles 

26 1 

The pressure profiles are then determined from the perfect gas equation of state 

_ -  p - L’ 
pn ~n Tn’ 

3. Properties of the phase plane 
Of all the possible boundary conditions for blast waves propagating into a 

uniform atmosphere, the point CJ, represents a special case, in that, for a specific 
value of h = AD, it is a singularity. One can thus have two families of integral 
curves : 

Family I. Those associated with the point CJ, for all values of A. 
Family 11. Those associated with the point CJ, for a fixed value of h = AD. 
The integral curves of family I are of the same kind as those with the strong 

shock condition, for which complete solutions were given in our previous paper 
(Oppenheim el al. 1972). Curves belonging to family I1 are of the same type as 
those in figure 1 and those for h = 0,  h = Q and h = j + 1 - w are described in the 
text of Sedov (1959). Their particular significance in the present case is associated 
with the singular nature of the CJ, point for h = AD. Since the singularity then 
coincides with the boundary condition, one has a degenerate solution represented 
by the CJ, point itself. 

Curves of family I, covering the full range of h in the case o f j  = 2 and y = 1.4, 
are plotted in the phase plane in figure 2 .  Continuous lines refer to physically 
meaningful cases of blast waves bounded by a single discontinuity. Broken lines 
represent solutions which are, in this respect, meaningless since they cross the 
sonic (D = 0) line and the profiles of gasdynamic parameters to which they 
correspond thereby become double-valued functions of the space and self- 
similarity co-ordinate x. As in figure 1, the directions associated with the increase 
of this co-ordinate are marked by arrows. Since, for all the integral curves, the 
point CJ, represents conditions at  the front, all the curves with arrows pointing 
towards this point represent explosions, while those having arrows pointing away 
correspond to implosions. 

The point of intersection of an integral curve of family I with the D = 0 line is, 
in effect, a singularity, denoted by the letter A .  For h = 0,  corresponding to a 
constant-velocity wave, the singularity A is located at  F = 0,  Z = 1.  As h 
increases, A travels along the D = 0 line as shown on figure 1. Finally, a t  

h = AD = gjy / (y  + 1) (12) 

A coincides with the point CJ,. For a gas with specific heat ratio y = 1.4, one 
thus has specifically 0 for j = 0, 

for j = 2. 
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FIGURE 2. Phase plane for family I. Solutions for all values o f  the decay 
parameter h ( j  = 2, y = 1.4). 

The singularity at A is, as arule, a node. As was shown in our previous paper, its 
position is given by the intersection of the Q = 0 and P = 0 lines on the D = 0 line. 
It has a conjugate singularity a t  the point G, which is always a saddle point. The 
two are coincident a t  

the position of point AG being also shown in figure 2 .  The Q = 0 and P = 0 lines can 
intersect again away from the D = 0 line, forming a third singularity B, which, 
as a rule, is a node. In figure 2 the locus of points B is denoted by a dotted line. 

At Z = co the integral curves attain either a fixed singularity E ,  representing 
conditions at  the 'hot ' piston face, for which FE = 1, or a singularity D for which 

h = A,, = jy[l - (+y)"l - 4 7 3 2 ,  (13) 

For a gas with the specific heat ratio y = 1.4, while h = A D ,  this yields specifically 

0 for j = 0, 
FD = 2% for j = 1, 1 & for j = 2 .  

Finally, at Z = 0 the integral curves can be associated with the singularity 0 
at the origin, i.e. F = 0, or with the singularity C at  F = 1, representing the con- 
ditions at the 'cold' piston face. 
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4. Integral curves of family I 
The integral curves in figure 2 are grouped into a number of classes (indicated 

by the numbers in circles), depending on the particular singularity a t  which they 
terminate. Thus the curves in sector 1 are associated with singularity D at Z = co. 
Since they also have to pass through singularity A ,  they cannot be in their 
entirety physically meaningful, except for the case h = 0, corresponding to the 
well-known solution for a constant-velocity Chapman-Jouguet detonation 
(Sedov 1959). This class of solutions is bounded on one side by h = A,, for which 
the integral curve terminates at  singularity B, and on the other side by h = A,, 
the solution corresponding to a decaying ‘free ’ (i.e. unsupported) spherical blast 
wave bounded by the CJ, detonation front. 

For family I the condition h = A, delineates regions in the phase plane devoid 
of integral curves, namely sectors 2 and 8. Sector 2 is bounded on the right-hand 
side by the curve corresponding to a decaying blast wave driven by a ‘hot’ piston 
at  singularity E whose front has a trajectory in the time-space domain identical 
to that of the ‘free ’ wave just described. Associated with the same singularity E 
are all the integral curves in sector 3. This class is in turn bounded by the line 
corresponding to h = 0, the solution for a constant-velocity piston-driven wave. 
Sector 4 contains integral curves representing ‘ cold’ piston-driven accelerating 
explosions, and includes all the negative valuesof h down to h = - co. As shown by 
Oppenheim et aE. (1972) the curve for h = - 2 can be considered as the limiting 
case of an exponential front trajectory, and that for h = co as one corresponding 
to a logarithmic front trajectory. 

Sector5,between h=+co and h = h , = ( j + l ) ( y - 1 ) ( h = 1 . 2  for j = 2 ,  
y = 1.4), embodies ‘ cold’ (zero temperature) piston-driven decelerating im- 
plosions, except for the limiting case h = A,, which corresponds to a piston at  
a finite temperature. Curves in sector 6 terminate at singularity B and represent, 
therefore, decaying implosion,s associated with infinite particle velocity and 
infinite sound speed. Sector 7 near CJ, starts with the case h = A,*, which 
again cannot be in its entirety physically meaningful since the integral curve 
intersects the D = 0 line. All the other curves in this sector intersect the D = 0 
line between CJ, and AG, and are thus also physically unrealistic. 

Sector 8, as has already been pointed out, is devoid of integral curves of 
family I. Sector 9 consists of curves representing decaying implosions associated 
with the condition of zero particle velocity and zero sound speed at  infinity. 
Finally, curves in sector I0  correspond to accelerating explosions with zero 
particle velocity and zero sound speed at  the centre. Blast waves in this regime 
differ from all the other physically meaningful cases discussed so far, in that they 
contain a region of negative particle velocity, for which u +- 0 as t 3 00. 

5. Integral curves of family 11 
Integral curves of family I1 for j = 2 and y = 1.4 are plotted in the phase plane 

in figure 3 ;  all of them correspond in this case to h = A, = 3. They are divided 
into four sets by the axes of singularity A ,  which is now located a t  the point CJ,. 
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F 

FIGURE 3. Phase plane for family I1 ( j  = 2, A = # jy / ( y+  I), = 1.4). 

In figure 3, the branch passing through points G and B has been omitted for the 
sake of clarity, the physical significance of all the axes having been discussed in 
the description of figure 2 .  It is by means of these axes, in fact, that sectors 2 and 8, 
which are devoid of integral curves in figure 2 ,  are delineated. 

In figure 3 the curves in these sectors are distinguished from the rest by the 
fact that they do not intersect the sonic line D = 0. Of all the solutions shown in 
figure 3 they are therefore the only ones corresponding to physically meaningful 
cases, thus filling up neatly the gap in figure 2 ,  without any overlap. As has 
been already pointed out, the co-ordinates of singularity A ,  situated now at 
the point CJ,, in this case represent by themselves a physically meaningful 
degenerate solution. The conjugate to singularity A at G is, as was pointed out 
earlier, a saddle point. In  particular its axes represent physically meaningful 
solutions. One of these is the already described curve AGB, which is a t  the same 
time an axis for A ,  as well as one for B. Since a t  G it crosses the D = 0 line, a 
branch of the other axis of G, the curve GO, can be also considered as part of 
a solution. It bounds, in fact, the class of physically meaningful integral curves 
in sector 8. Thus G admits a double-branched solution, one branch continuing 
through towards singularity B, while the other has a discontinuity at  G and 
terminates at  0. 
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6. Gasdynamic parameters 

265 

Space profiles of the gasdynamic parameters u, p, p and T cc p/p corresponding 
to all the physically meaningful solutions represented on figures 2 and 3 are 
shown in figures 4, 5, 6 and 7 respectively. The letters labelling the various 
singularities that appear on these diagrams correspond to the same conditions as 
in the description of the intergal curves on the phase plane (see also Oppenheim 
el al. 1972). Thus, in figure 4, points labelled l3 represent conditions a t  the ‘hot 
piston face ’, H corresponds to the constant-velocity piston, while C represents 
conditions at the ‘cold piston face’. As is evident from the diagram, when the 
value of h decreases the velocity of the piston increases. Figures 4-7 represent 
primarily the gasdynamic profiles of solutions of family I. They contain just a 
couple of representative cases of family 11, while, on the logarithmic plots of 
these figures, the degenerate solutions appear as straight lines. 

7. Conclusions 
To sum up, we have explored all the possible self-similar solutions for blast 

waves that can be associated with the strong Chapman-Jouguet condition CJ,, 
that is, one corresponding to an infinite pressure ratio at  the front. It is our claim 
that, in view of the proximity of the Chapman-Jouguet points for some repre- 
sentative chemical systems to the point CJ, in the phase plane, such solutions 
have a distinct possibility of being physically meaningful, although they admit 
the possibility of the existence of Chapman-Jouguet detonations of variable 
velocity, which from the classical point of view is paradoxical. 

However, at  this juncture, we offer the results of our studies just as an inter- 
esting case in blast wave theory for two reasons. On one hand, they represent 
a limit for the whole class of physically meaningful solutions of self-similar blast 
waves which are bounded by fronts associated with the deposition of energy. 
On the other, they exhibit some unique properties owing to the fact that a 
singularity may coincide with the point representing the boundary conditions. 
This gives rise to two families of solutions, including the degenerate case of 
one corresponding to this point by itself. 

This work was supported by the United States Air Force through the Air Force 
Office of Scientific Research under Grant AFOSR-72-2200, by the National 
Aeronautics and Space Administration under Grant NsG-702105-003-050 and by 
the National Science Foundation under Grant NSF GK-2156. 

Appendix. Planar waves 
The anomaly associated with the CJ, point acquires a peculiar feature in the 

case of planar waves for then, according to (12), A, = 0, that is the front velocity 
is constant. At the same time, however, the D = 0 line loses its significance as 
a locus of singularities. Since, under such circumstances, this case becomes quite 
different from those of other geometries, it  is here considered in particular. 
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I n  general, f o r j  = 0, (3) and (4) become, respectively, 

&(F,  2) = F D  - (A/?) 2 
P(P, 2) = 2( I - F )  D + A( D - (y - l/r) 2). 

(A 1) 

and (A 2) 

As before, there are two classes of solutions, one corresponding to piston-driven 
waves and the other to point explosions. 

For the first, D 4 0 and (2), using (A 1) and (A2) with h = 0,  reduces to 

whence 

At the same time (10) becomes 

dlnx/dF = - I/F, 
whence x = PJF.  

The information on the flow field is then completed by observing that, by com- 
bining the above with (11))  one gets 

u = w, F, = constant, 
a = W,Z$ = constant. 

For the second class of solutions D = 0. I n  this case after substitution of (A 1) 
and (A2) into (2) with D = 0, the application of I’HospitaI’s rule yields 

whence I- dZ/dF = - 2( I - F ) ,  
2 = (1-F)2.  

Equation (A 6) demonstrates that  the D = 0 condition satisfies the differential 
equation, and that the D = 0 line is therefore an integral curve. It represents, in 
fact, the well-known family of Riemann solutions associated with Chapman- 
Jouguet detonation fronts (see e.g. Stanyukovich 1960, chap. VIII). The 
Riemann invariant can be expressed in reduced co-ordinates as follows: 

By eliminating 2 by the use of (A6) and evaluating the constant k from the 
boundary condition P = F, a t  x = 1 one gets 

l-*(r+l)F, 
X =  

J. - * ( y +  1 ) F  

while, with the use of the definitions of (I), 

and 

The boundary conditions for solutions represented by the D = 0 line are 
related to the front Mach number as follows: 

p, = (1  - y ) / ( y+  I), 2, = (1 -p,)2, (A 10) 



Self-similar blast waves 269 

1.0 

0.8 

0.6 

e 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1 .o 
P 

FIGURE 8. Phase plane for planar waves with constant front velocity 
(j = 0, h = 0, = 1.4). 

where y = l /Mk .  y is, in turn, related to the pressure ratio at  constant density 
across the detonation (Po), i.e. 

Salient properties of the phase plane for the case of j = 0 are depicted in 
figure 8. It is of interest to compare this figure with figure 1. The only difference 
between the two cases is that nowj = 0 while beforej = 2 .  The main family of 
the integral curves for j = 0 are simple parabolae with their apices at the origin 
of the phase plane. As before the regime of boundary conditions is bounded by 
the R H  line and the curves representing the conditions of D = 0 and P(: = 00. 

Unlike the previous case, however, the direction of increasing radius does not 
change across the D = 0 line. Thus to the right of the point representing the 
boundary condition the integral curves represent piston-driven blast waves. To 
the left, however, they correspond to a new class of implosions which did not 
exist previously. On the other hand, all the integral curves representing point 
explosions bounded by a Chapman-Jouguet detonation collapse into the D = 0 
line itself, the locus of the Chapman-Jouguet conditions. Since again the radius 
increases monotonically with increasing F, the segment of the D = 0 line above 
the point representing the boundary condition corresponds to an explosion while 
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that below corresponds to an implosion. The latter terminates a t  B, corresponding 
to infinite radius. This point is fixed by the intersection of the loci of the B = 0 and 
D = 0 conditions (see figure 2 ) ,  its co-ordinate being specified by FB = 2(y + I), 
as is quite obvious from (A 8). I n  contrast to this the CJ,  point becomes devoid 
of all the interesting properties it possesses in the cases of non-planar geometry. 

R E F E R E N C E S  

CHAMPETIER, J. L., COUAIRON, M. &VENDENBOOMGAERDE, Y. 1968 C. R. AcadSci., Paris, 

COURANT, R. & FRIEDRICHS, K. 0. 1948 Supersonic Plow and Shock Waves. Interscience. 
OPPENHEIM, A. K., KUHL, A. L., LUNDSTROM, E. A. & KAMEL, M. M. 1972 A parametric 

study of self-similar blast waves. J .  Fluid Mech. 52, 657-682. 
SEDOV, L. I. 1959 Similarity and Dimensional Methods in Mechanics, 4th edn., English 

translation (ed. M. Holt), chap. IV, pp. 193-200. Academic. 
STANYUKOVICH, K. P. 1955 Unsteady Motion of Continuous Media. Moscow: Gostokhizdat. 

(Trans. 1960, ed. M. Holt, Pergamon.) 
TAYLOR, G. I. 1950 The dynamics of the combustion products behind plane and spherical 

detonation fronts in explosives. Proc. Roy. SOC. A 200,235-247. (See also 1958 Punda- 
mentals of Gas Dynamics (ed. H. W. Emmons), chap. 3. Princeton University Press.) 

WILSON, C. R. & TURCOTTE, D. L. 1970 Similarity solution for a spherical radiation- 
driven shock wave. J .  Fluid Mech. 43, 399-406. 

ZEL’DOVICH, YA. B. & KOMPANEETS, A. A. 1960 Theory of Detonation, pp. 279-284. 
Academic. 

ZEL’DOVICH, YA. B. & RAIZER, Yu. P. 1966 Physics of Shock Waves and High-Temperatwe 
Hydrodynamic Phenomena (ed. W. D. Hayes and R. F. Probstein),vol. 11, pp. 785-811. 
Academic. 

B 267, 1133. 


